(i) (a)
$$y' = e^{2x} + \sin(x)$$

(i) order 1 (since y' is largest derivative)
(ii) linear since of the form
(1) $y' + (0) y = (e^{2x} + \sin(x))$
(i) $y'' + \sin(2x) y' + 2y = e^{x}$
(i) order 2 (since y'' is largest derivative)
(ii) linear since of the form
(1) $y'' + (\sin(2x)) y' + 2y = e^{x}$
(i) order 4 form
(1) $y'' + (\sin(2x)) y' + 2y = e^{x}$

(i) (c)
$$y''' + 3y'' + 4y' + 12y = x^{2} + x - 1$$

(i) order 3 (since y'' is largest derivative)
(ii) linear since of the form
(i) $y''' + 3y'' + 4y + 12y = x^{2} + x - 1$
Coefficients are #'s and x's
(d) $2y'' + yx^{3}y' + x^{2}y = 10$
(i) order 2 (since y'' is largest derivative)
(ii) hot linear
(i) $y'' + yx^{3}y' + x^{2}y = 10$

$$\frac{D(e)}{x^2} = \frac{d^2y}{dx^{10}} - 5 \frac{d^2y}{dx^2} + \sin(x) \frac{dy}{dx} - 2\sin(x)y = e^x$$

(ii) order 10 (since dx' is largest derivative) (iii) linear since of the form

(i) (f)
$$(y^{2}+1)\frac{dy}{dx} + e^{y}y = 2x$$

(i) order 1 (since $\frac{dy}{dx}$ is largest derivative)
(ii) not linear
 $(y^{2}+1)\frac{dy}{dx} + e^{y}y = 2x = 0$ and $x's$
and $x's$
but there coefficients have
 $y's$ hence not linear

(2)(a) First note that $f_1(x) = e^{2x}$ and $f_2(x) = e^{-2x}$ are both defined on $I = (-\infty, \infty)$.

We have

$$f_1(x) = e^{2x}$$
 all
 $f_1(x) = 2e^{2x}$ all
 $f_1(x) = 2e^{2x}$ $f_1(x) = 2e^{2x}$ $f_2(x)$
 $f_1(x) = 2e^{2x}$ $f_1(x) = 4e^{2x}$

Thus,

$$f_{1}^{"} - 4f_{1} = 4e^{2x} - 4e^{2x} = 0$$

So,
$$f_1$$
 satisfies $y'' - 4y = 0$

Also,

$$f_{2}(x) = e$$

$$f_{2}(x) = -2e^{-2x}$$

$$f_{2}'(x) = -2e^{-2x}$$

$$f_{2}''(x) = 4e^{-2x}$$

$$f_{2}''(x) = 4e^{-2x}$$

Thus, $f_{2}'' - 4f_{2} = 4e^{-2x} + 4e^{-2x} = 0$ So, f_{2} satisfies y'' - 4y = 0.

$$(2)(b)$$
Let $f(x) = c_1f_1(x) + c_2f_2(x) = c_1e^{2x} + c_2e^{-2x}$.
Then,
 $f'(x) = 2c_1e^{2x} - 2c_2e^{-2x}$
 $f''(x) = 4c_1e^{2x} + 4c_2e^{-2x}$.
Thus,
 $f'' - 4f = 4c_1e^{2x} + 4c_2e^{-2x} - 4(c_1e^{2x} + c_2e^{2x}) = 0$
So, f satisfies $y'' - 4y = 0$

(2)(c) We know from part (b) that

$$f(x) = c_1 e^{2x} + c_2 e^{2x}$$
 satisfies $y'' - 4y = 0$.
 $f(x) = c_1 e^{2x} + c_2 e^{2x}$ satisfies $y'' - 4y = 0$.
Now we need it to also satisfy $y'(0) = 0$, $y(0) = 1$.
Note that
 $Note$ that
 $f'(x) = 2c_1 e^{2x} - 2c_2 e^{-2x}$
 $f'(x) = 2c_1 e^{2x} - 2c_2 e^{-2x}$
So when need

So, we need

$$0 = f'(0) = 2c_1e^{2(0)} - 2c_2e^{-2(0)} = 2c_1 - 2c_2$$

$$0 = f'(0) = c_1e^{2(0)} + c_2e^{2(0)} = c_1 + c_2$$

That is we need to solve $2c_1 - 2c_2 = 0$ (1) $c_1 + c_2 = 1$ (2)

Which is equivalent to $C_1 - C_2 = 0$ $C_1 + C_2 = 1$

T) gives
$$c_1 = c_2$$
.
Plug this into (2) to get $c_2 + c_2 = 1$.
So, $c_2 = \frac{1}{2}$.

Thus,
$$c_1 = c_2 = \frac{1}{2}$$
.
Thus,
 $f(x) = \frac{1}{2}e^{2x} + \frac{1}{2}e^{-2x}$
satisfier
 $y'' - 4y = 0$, $y'(o) = 0$, $y(o) = 0$

3 Let
$$\varphi(x) = 2\sqrt{x} - \sqrt{x} \ln(x)$$

Note that φ is defined
for all $x > 0$
that is on $I = (0, \infty)$.
3(a) We have
 $\varphi(x) = 2x^{1/2} - \frac{1}{2}x^{1/2} \ln(x) - x^{1/2} + \frac{1}{2}x^{1/2} \ln(x) - \frac{1}{2}x^{1/2} + \frac{1}{2}x^{1/2} + \frac{1}{2}x^{-1/2} + \ln(x)$

Thus,

$$\begin{aligned}
& H_{\chi}^{2} \cdot \varphi'' + \varphi = H_{\chi}^{2} \left[-\frac{1}{2} \times \frac{-3/2}{+4} + \frac{1}{4} \times \frac{-3/2}{-4} \cdot \ln(\chi) \right] \\
& + 2\chi'^{12} - \chi'^{12} \cdot \ln(\chi) \\
& = -2\chi'^{12} + \chi'^{12} \cdot \ln(\chi) \\
& + 2\chi'^{12} - \chi'^{12} \cdot \ln(\chi) = 0
\end{aligned}$$

Therefore,
$$\varphi(x) = 2\sqrt{x} - \sqrt{x} \ln(x)$$

satisfies $4x^2y'' + y = 0$ on $I = (0, \infty)$.
Now let's verify that $\varphi(x)$ satisfies
 $y'(1) = 0$ and $y(1) = 2$.

We have that

$$\varphi(1) = 2\sqrt{1 - \sqrt{1 \cdot \ln(1)}} = 2$$

 $\varphi'(1) = -\frac{1}{2}(1)^{1/2} \cdot \ln(1) = 0$
 0
Thus, from (a) and the above we know that
 φ solves the initial-value problem
 $4x^2y'' + y = 0$, $y'(1) = 0$, $y(1) = 2$

(4) Let
$$f(x) = cos(2x)$$

Then
 $f(x) = cos(2x)$ all

And,

$$f''' + 3f'' + 4f' + 12f$$

= $8\sin(2x) + 3(-4\cos(2x))$
 $+ 4(-2\sin(2x)) + 12\cos(2x)$
= $8\sin(2x) - 12\cos(2x)$
 $-8\sin(2x) + 12\cos(2x)$
= 0
Thus, $f(x) = \cos(2x)$ satisfies
 $y''' + 3y'' + 4y' + 12y = 0$

Now let's verify that f satisfies
the conditions
$$y''(o) = -4$$
, $y'(o) = 0$, $y(o) = 1$
We have
 $f''(o) = -4 \cos(2 \cdot 0) = -4(1) = -4$
 $f'(o) = -2 \sin(2 \cdot 0) = -2(0) = 0$
 $f(o) = \cos(2 \cdot 0) = 1$
It does!
Therefore, $f(x) = \cos(2x)$ solves
 $y''' + 3y'' + 4y' + 12y = 0$
 $y''(o) = -4$, $y'(o) = 0$, $y(o) = 1$